High Efficiency Cryo Freezer Operator Manual

Azenta, Inc.

Information provided within this document is subject to change without notice, and although believed to be accurate, Azenta, Inc. assumes no responsibility for any errors, omissions, or inaccuracies.

BioStore[™], BioWarehouse[™], SampleStore[™], Strata[™], Tube Auditor[™], Azenta[™], Azenta Life Sciences[™], and the Azenta logo are trademarks of Azenta, Inc.

CryoExchange®, CryoPod®, FrameStar®, FreezerPro®, and IntelliXcap® are registered U.S. trademarks of Azenta, Inc.

All other trademarks are properties of their respective owners.

© 2024 Azenta, Inc. All rights reserved. The information included in this manual is proprietary information of Azenta, Inc. and is provided for the use of Azenta, Inc. customers only and cannot be used for distribution, reproduction, or sale without the express written permission of Azenta, Inc.

This technology is subject to United States export Administration Regulations and authorized to the destination only; diversion contrary to U.S. law is prohibited.

Original manual printed in English.

These are the original instructions for the High Efficiency Cryo Freezer.

Corporate Headquarters

200 Summit Drive, 6th Floor Burlington, MA 01803 U.S.A.

European Union Representative Im Leuschnerpark 1B 64347 Griesheim, Germany

For Customer Service/Sales Inquiries:

Location	Location Contact Number		
North America +1-888-2AZENTA (+1-888-229-3682)			
Europe	+44-161-777-2000	www.azenta.com	
Japan	+81-3-6628-2950		

For Technical Support:

Location	Location Contact Number	
North America +1-800-379-7221		
Europe	Europe +41-31-770-7373 / +44-161-777-2107 www.azenta.com	
Japan	+81-3-6628-2950	

Table of Contents

High Efficiency Cryo Freezer	1
1. Safety	6
Liquid Nitrogen	
Frostbite	7
Asphyxiation	7
Over-Pressurization	8
Pinch and Nip	8
Regulatory	9
2. Introduction	10
3. Product Information	11
Freezer Specifications	11
Regular Height	11
Extended Height	12
A76	
Control System	
Plumbing System	
Facility Requirement	
Environmental	
Thermal Load	
Noise Emission	
Vibrations	
Decontamination	
Disposal	
4. Installation	
Uncrating	
Setup and Initial Fill	18
5. Settings	20
Home Page	
Setup Settings	
Allowable Ranges	
Network Settings	
Alarms Settings	
Users Settings	
Service Settings	
Email Settings	
Advanced Settings	
Default Settings	
6. Operation	
LN2 Vapor Storage	
Accessing Samples	
LN2 Level Measurement	
LN2 Level Control	
LN2 Usage	34

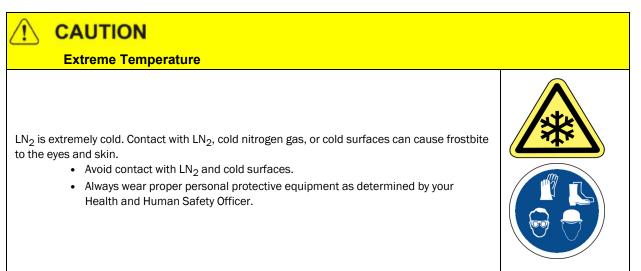
Temperature Measurement	
Event Log	
Cloud Storage	
Alarm Notifications	
Battery Backup	
7. Preventative Maintenance	
Preventative Maintenance Table	
8. Troubleshooting	
9. Repair Procedures	
LN2 Transfer Hose Connect / Disconnect	43
Safety Panel Removal	44
Control Cabinet Removal	45
Lid Removal	
Lid Gasket Replacement	
Lid Foam Insulation Replacement	
Pressure Relief Valve Replacement	
Fill and Purge Valve (Main Line Assembly)	
Isolation Valve Replacement	51
Temperature Probe Replacement	
Independent Temperature Probe Installation	53
Purge Temperature Probe Replacement	54
Battery Backup Replacement	55
Controller Replacement	
Power Supply Replacement	
Fuse Replacement	
Temperature Probe Calibration Verification	
Manual LN2 Level Verification	60
LN2 Level Calibration	61
Freezer Decontamination	62
10. Appendices	63
Appendix A: Spare Parts	64
Appendix B: Altitude - LN2 Temperature Table	65
Appendix C: Temperature - Pt-100 Sensor Resistance Table	66
Appendix D: LN2 Level - Pressure Units Table	67
Appendix E: WEEE Statement (European Union)	68

1. Safety

This section reviews the safety guidelines for cryo freezers. Read before using this equipment. This product is intended for use by trained personnel only. All service and maintenance should be performed by Azenta or authorized Azenta representatives.

Liquid Nitrogen

Nitrogen is an inert, colorless, and odorless gas that forms about 78% of the Earth's atmosphere. Liquid Nitrogen (LN_2) is nitrogen in a liquid state at an extremely low temperature. When properly insulated in cryogenic containers, or dewars, LN_2 can be used as an energy efficient refrigerant for cryopreservation. It is a consumed or depleted refrigerant so additional LN_2 must be routinely added to maintain the freezer storage temperature. Certain safety precautions must be followed when handling LN_2 . Please follow the appropriate handling instructions for UN number 1977.


Liquid Nitrogen Hazard

Moving a cold refrigerant line may cause gas line to crimp and insulation to crack which may cause minor or moderate injury along with hazardous refrigerant discharge.

• Do not attempt to move or position the refrigerant lines.

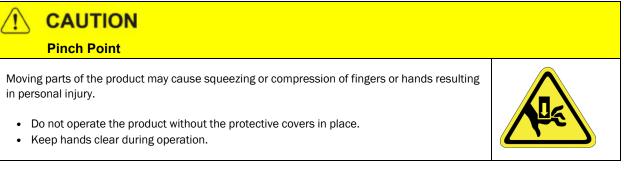
Frostbite

Asphyxiation

Because the cryo freezer uses liquid nitrogen, off-gassing occurs. Due to the closed and insulated nature of the system, the off-gassing of nitrogen displaces oxygen and other naturally occurring atmospheric gases. This can pose a major health risk to anyone who opens the cryo freezer lid without first accurately measuring the oxygen level and/or properly dissipating the concentration of nitrogen gas. Although oxygen levels can vary based on the level of LN_2 in the system and/or time between refilling the LN_2 cavity, worst case scenario must be assumed.

- Vent the exhaust from the pressure relief valves according to facility or local environmental regulations.
- Install an alarm to alert personnel of dangerously low levels of oxygen.
- Perform service on the refrigeration unit in a well ventilated area.

Although nitrogen is nontoxic, it can act as an asphyxiant by displacing oxygen in the air to levels below that required for breathing. Inhalation of excessive nitrogen can cause dizziness, nausea, vomiting, loss of consciousness, and death. Personnel, including rescue workers, should not enter areas where oxygen concentration is below 19.5%, unless equipped with proper breathing apparatus. Oxygen monitors / alarms are recommended for any LN_2 setup.


It is important that operators and technicians understand how reduced oxygen concentration in air can affect the body. Should any of the symptoms in the following table be noticed, the person should immediately move away from the store and ensure that the nitrogen is immediately shut off at source and the laboratory ventilated.

Oxygen Content (% by Volume)	Effects and Symptoms	
20.9%	Oxygen concentration in normal air.	
19.5%	Minimum permissible oxygen level.	
15% to 19%	Decreased ability to work strenuously. May impair co-ordination and may cause early symp- toms for persons with coronary, pulmonary, or circulatory problems.	
10% to 12%	Respiration further increases in rate and depth. May display poor judgment, blue lips.	
8% to 10%	Mental failure, fainting, unconsciousness, ashen face, nausea, vomiting.	
6% to 8%	Recovery still possible after four to five minutes, 50% fatal after six minutes. Fatal after eight minutes.	
4% to 6%	Coma in 40 seconds, convulsions, respiration ceases, death.	

Over-Pressurization

High Efficiency Cryo Freezers are non pressurized and vented through the lid into the surrounding environment. The plumbing assembly is equipped with a pressure relief device. All containers, plumbing assemblies, and transfer hoses must be vented to atmosphere or have a pressure relief device present. If an LN_2 supply with higher than specified pressure is connected to the freezer, the pressure relief valve will activate, generating flow noise. Long exposure to this noise may cause hearing damage. Nitrogen has a liquid to gas expansion ratio of 1 to 694. Over-pressurization can occur if LN_2 is trapped in a closed container and can result in death or serious injury.

Pinch and Nip

Potential pinch and nip point hazards exist on the hinged step, lid, and rotating turn tray if not operated properly. Raise and lower the step and lid with caution. Rotate and stop the turn tray slowly and with caution.

Regulatory

The High Efficiency Cryo Freezer meets the following safety requirements conforming to:

UL STD 61010-1, CSA STD C22.2 # 61010-1, Low Voltage Directive (2014/35/EU)

DOCUMENT NUMBER: 383901	Declaration of C	Conformity, Low Voltage Directive	
REVISION: A	DOCUMENT CLASSIFICA	ATION:	
ECO# EC133945	04-Form, Template or C	Ither	
	DE	ECLARATION OF CONFORMITY	Y
Description:Manual Cryo FreezersFunction:Cryopreservation of biological tissue at -190 °C temperatureModels:A220, A440, A700, A1000, E264, E528, E840, E1200, IVF76Part Numbers:34-00, 34X-00, 45-00, 45X-00, 55-00, 55X-00, 65-00, 65X-00, 32V			, E1200, IVF76
	address of the manufacture	r of the machinery: Drive, Chelmsford, MA, USA 01824	
		Community, authorized to compile the relevant tec nbH, Im Leuschnerpark 1B, 6434	
 EN 610 laborat 	nent fulfills all the rele 010-1:2010+A1:2019 ory use. General requi	evant provisions of Low Voltage Directive . Safety requirements for electrical equip irements vant provisions of Directive 2014/30/EU	oment for measurement, control, and
 EN 613 		equipment for measurement, control and	
June 2011 on t amendment 20 o BS EN	he restriction of the u 15/863/EU. IEC 63000:2018. Tec	with Directive 2011/65/EU of the Europe se of certain hazardous substances in e chnical documentation for the assessme of hazardous substances.	electrical and electronic equipment and
Year CE Marking Aff		2018	
	ie behalf of Azenta Life	,	
		1, 2022 06:37 GMT+1)
Print name: Rob Woodwa Position: Senior Vice Pre: Place: Irlam, Manchester	sident, Global Quality Execu	tive Management	
		fidential and is to be used only in co losed to others without prior written p	nnection with matters authorized by permission from Azenta.
	ay, August 10, 2022	This is uncontrolled when print	ed PAGE 1 OF 1

2. Introduction

This manual reviews the operation and maintenance of the High Efficiency Cryo Freezer. Read before using this equipment.

High Efficiency Cryo Freezers are designed for safe and efficient storage of biological samples in dry liquid nitrogen (LN_2) vapor at -190 °C (-310 °F). This is a stainless steel, vacuum-insulated, non-pressurized dewar. The control system automatically maintains the LN_2 level inside the freezer while monitoring and logging storage conditions. Samples are packaged and placed in racks that are stored inside the freezer within a lazy susan turn tray to allow easy access. The turn tray hangs above a reservoir of LN_2 and keeps the samples in a dry storage area. Vaporization of the LN_2 reservoir within the insulated freezer provides cryogenic temperatures. LN_2 must be regularly replenished in order for the freezer to maintain its cooling function. If LN_2 is depleted and not replenished, the freezer slowly warms and eventually reaches ambient temperature.

Certain safety precautions must be followed when working with or handling LN₂. Please see the chapter "Safety" on page 6 for more details.

3. Product Information

Freezer Specifications

Regular Height

Specification	A220	A440	A700	A1000
Outer Diameter - in (mm)	34.0 (824)	45.0 (1143)	55.0 (1397)	65.0 (1651)
Overall Height - in (mm)	58.0 (1473)	59.0 (1143)	63.0 (1600)	59.0 (1499)
Usable Height - in (mm)	30.0 (762)	30.0 (762)	30.0 (762)	30.0 (762)
Step Height - in (mm)	9.5 (241)	10.5 (267)	10.0 (254) * 2	10.5 (267) * 2
Liftover Height - in (mm)	39.5 (1003)	39.5 (1003)	34.0 (864)	34.0 (864)
LN ₂ Capacity	65 L	150 L	250 L	390 L
LN2 Volume/Level - L/in	12.7	22.7	35.1	49.9
Hold Time	> 10 Days	> 15 Days	> 25 Days	> 21 Days
Weight Empty - Ibs (kg)	589 (267)	900 (408)	1,560 (780)	1,900 (862)
Weight Max - Ibs (kg)	835 (379)	1,358 (616)	2,279 (1034)	2,979 (1,351)

Extended Height

Specification	E264	E528	E840	E1200
Outer Diameter - in (mm)	34.0 (824)	45.0 (1143)	55.0 (1397)	65.0 (1651)
Overall Height - in (mm)	62.0 (1615)	63.0 (1600)	67.0 (1702)	64.0 (1626)
Usable Height - in (mm)	34.0 (864)	34.0 (864)	34.0 (864)	34.0 (864)
Step Height - in (mm)	9.5 (241) * 2	10.0 (254) * 2	10.5 (267) * 2	11.0 (279) * 2
Liftover Height - in (mm)	34.0 (864)	34.0 (864)	37.0 (940)	37.9 (940)
LN ₂ Capacity	65 L	150 L	250 L	390 L
LN2 Volume/Level - L/in	12.7	22.7	35.1	49.9
Hold Time	> 10 Days	> 15 Days	> 25 Days	> 21 Days
Weight Empty - Ibs (kg)	653 (296)	975 (442)	1,650 (748)	2,000 (907)
Weight Max - Ibs (kg)	927 (420)	2,260 (1,025)	4,040 (1833)	3,191 (1,447)

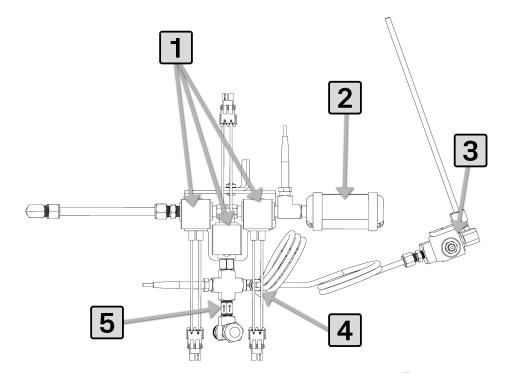
A76

Specification	A76
Outer Diameter - in (mm)	32.0 (813)
Overall Height - in (mm)	47.0 (1194)
Usable Height - in (mm)	14.0 (356)
Liftover Height - in (mm)	37.5 (953)
LN ₂ Capacity	87 L
LN2 Volume/Level - L/in	11.1
Hold Time	> 10 Days
Weight Empty - Ibs (kg)	344 (156)
Weight Max - Ibs (kg)	797 (362)

Control System

The control system is designed to automatically maintain the freezer LN_2 level while monitoring and logging storage conditions. It consists of a custom controller and touchscreen monitor. The main power input and battery backup selector switch are located along the safety panels towards the back of the freezer.

Figure 3-1: Freezer control system input/output locations


Part No.	Part Name
1	Touchscreen Monitor
2	USB & Alarm Contacts
3	LN ₂ Input (22-35 PSI)
4	Relief Valve (75 PSI)
5	Battery Backup Switch
6	Main Power Input (110-220VAC)

Control System Specification

Control System	Specification
Controller	30VDC 3A Wireless 2.4 GHz 802.11n USB 2.0 Dry Alarm Contacts NO/NC
Temperature Sensor	2 x Pt-100 RTD -200°C to 70°C ±1.0°C
Level Sensor	Differential Pressure ±0.5 in (1.3 cm)
Power Supply	Input: 100-230VAC 50-60Hz Output: 24VDC 3A
Battery Backup	2 * 12VDC 20AH Lead-acid
LED	Cryogenic LED
Lid Switch	Proximity Switch

Plumbing System

The plumbing system safely and efficiently transfers LN_2 from the supply system to the freezer and transmits the LN_2 differential pressure level signal to the controller. It is installed underneath the top cover, behind the safety panels. The LN_2 input and pressure relief valve extend through the safety panels and are accessible along the back of the freezer.

No.	Part Description	Part Number
1	2- WAY VALVE, SMC, W CONNECTOR	XX-0170
2	ASSY, MUFFLER WITH DEFLECTOR	XX-0187
3	RELIEF VALVE, CRYO, 1/4 NPT, 3/4"-20 UNEF RELIEF P	FT-0043
4	ASSY, FLUSH VALVE, NO ISO VALVE	XX-0176
5	INLINE FILTER, 1/4 NPT, 90 MICRON, BRASS	FT-0019

Facility Requirement

	A2	20	A440	A700	A1000		
Space Required - Steps Up: L x W x H - in (mm)	34.0 x 36.0 x 78.0 (864 x 914 x 1956)		45.0 x 47.0 x 79.0 (1143 x 1194 x 2007)	55.0 x 62.5 x 80.0 (1397 x 1588 x 2032)	65.0 x 72.2 x 81.0 (1651 x 1834 x 2057)		
Space Required - Steps Down: L x W x H - in (mm)	34.0 x 44 (864 x 113		45.0 x 55.0 x 79.0 (1143 x 1397 x 2007)	55.0 x 74.0 x 80.0 (1397 x 1880 x 2032)	65.0 x 83.7 x 81.0 (1651 x 2126 x 2057)		
Max Floor Load Ibs/ft ² (kg/m ²)	378 (:	1846)	352 (1719)	322 (1572)	305 (1490)		
	E2	64	E528	E840	E1200		
Space Required - Step Up: L x W x H - in (mm)	34.0 x 40.0 x 82.0 (864 x 1016 x 2083)		45.0 x 52.0 x 83.0 (1143 x 1321 x 2108)	55.0 x 62.5 x 84.0 (1397 x 1588 x 2134)	65.0 x 72.2 x 85.0 (1651 x 1834 x 2159)		
Space Required - Steps Down: L x W x H - in (mm)	34.0 x 50.0 x 82.0 (864 x 1270 x 2083)		45.0 x 62.5 x 83.0 (1143 x 1588 x 2108)	55.0 x 74.0 x 84.0 (1397 x 1880 x 2134)	65.0 x 83.7 x 85.0 (1651 x 2126 x 2159)		
Max Floor Load Ibs/ft ² (kg/m ²)	454 (2217)		422 (2060)	386 (1885)	366 (1787)		
				A76			
Space Require L x W x H - in (m			36.0 x 32.0 x 47.0 (914 x 813 x 1194)				
Max Floor Load Ib (kg/m ²)	os/ft ²			200 (976)			
Electrical		100)-230VAC 50-60Hz 0.	7A continuous, 2.9A full	load		
LN ₂ Supply			22-35 PSI (1.5-2.	4 Bar) CGA-295			
Ventilation		General laboratory air change rate minimums are typically sufficient for LN2 freezer install- ations; however, consult your Health and Human Safety Officer or equivalent group					
Oxygen Monitoring		Oxygen monitoring and alarms are recommended for any LN_2 setup					
Temperature		Near room temperature, 18°-27°C (65°-80°F)					
Relative Humidity			Less than 50%,	non condensing			
Seismic Restraint	Seismic r		ay be required in earthquand regulations. Contact A				

Environmental

Thermal Load

Freezer thermal load is negligible with no mechanical refrigeration. Vaporization of LN_2 within the insulated freezer provides cryogenic temperatures.

Noise Emission

Freezer noise emission is negligible with no mechanical refrigeration. Flow noise is generated by the pressurized LN_2 supply when relief valves release excess pressure or when the freezer is purging or filling. A purge muffler is included to suppress flow noise while the freezer is purging, but the freezer is not the sound source.

Vibrations

Freezer does not generate vibrations or environmental vibration hazards.

Decontamination

Freezers are designed for the safe and efficient storage of biological material at cryogenic temperatures. The freezer must be properly decontaminated prior to freezer shipment or disposal. Please refer to the decontamination repair procedure "Freezer Decontamination" on page 62.

Disposal

Battery backup consists of two, 12VDC, 20AH, lead-acid batteries. These and other electronic components such as the freezer control system should be properly recycled or disposed of according to local regulatory guidelines. The freezer itself is a stainless steel, vacuum insulated vessel with an aluminum inner turn tray. Once freezer has been decontaminated and any prohibited components removed, the freezer may be disposed of or recycled according to local regulatory guidelines.

4. Installation

Uncrating

The reusable, snap together quick crate reduces, time, waste, and cleanup. The empty crate can be flat packed and efficiently stored or shipped back to be reused. Always inspect the freezer crate for damage and verify the bill of lading prior to accepting the shipment.

To uncrate the freezer, follow the High Efficiency Cryo Freezer Uncrating Procedure (PN: 382451).

Setup and Initial Fill

High Efficiency Cryo Freezers arrive ready for a plug and play setup. The control system is preinstalled with temperature and level sensors factory calibrated. A convenient initial fill routine avoids nuisance alarms as the freezer cools down. The initial fill takes longer and uses more LN_2 than a normal fill. The freezer should be installed in an area appropriate for LN_2 service with adequate ventilation, oxygen monitoring, and an even floor with sufficient load support. Please see the "Safety" on page 6 and "Facility Requirement" on page 16 section of the manual for more information.

Step	Action
1.	Open the lid and remove desiccant packs.
2.	<image/>
3.	Connect LN ₂ supply (22-35 PSI) with the provided transfer hose. Open the LN ₂ supply valve. Do a leak check.
4.	Touch Start Fill to begin the initial fill routine. Close the lid when complete.

Following the initial fill, normal controller operation continues to maintain LN_2 levels while monitoring and logging storage conditions. Allow the freezer to cool for 48 hours prior to introducing samples. Routinely verify freezer LN_2 Level and ensure sufficient LN_2 supply volume and pressure.

	A220/E254	A440/E258	A700/E840	A1000/E1200	A76
LN ₂ Needed for Initial Fill and Cool Down	180 L	230 L	410 L	460 L	180 L

5. Settings

This chapter covers the settings of the touchscreen monitor of the High Efficiency Cryo Freezer. Each tab contains the same header that includes the date, time, Unit ID, Top and Bot temperatures, LN_2 level, and LN_2 Usage and status indicator icons for Alarms, cloud, WiFi, and main power turn red signaling an issue. The chapter also covers the different settings within each Settings tab and how to adjust them.

Home Page

The **Home** page displays the current freezer status and storage conditions. Freezer temperatures and LN_2 level are predominantly displayed. The header includes the date, time, *Unit ID*, *Top* and *Bot* temperatures, LN_2 Level, and LN_2 Usage. Status indicator icons for alarms, cloud, WiFi, and main power turn red signaling an issue. Touching the **Alarm** icon opens the alarm status window and display any current alarms. Touching the **WiFi** icon provides the freezer IP address. The other main pages are **Graphs**, **Event Log**, and **Settings**.

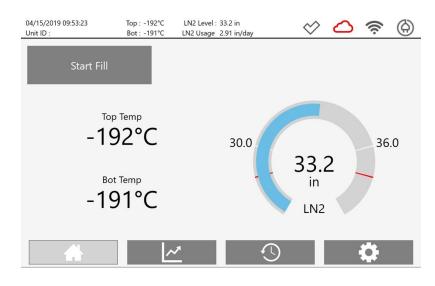


Figure 5-1: Home Page

Setup Settings

General freezer setup parameters can be adjusted by navigating to the **Settings > Setup** tab. You can adjust the display units, display format, temperature alarms, LN_2 level fill limits, scheduled fill, and max fill and purge time. The LN_2 level alarms are automatically placed 0.5 in (1.3 cm) above the *High Level Fill Limit* and below the *Low Level Fill Limit*. The *Max Fill Time* and *Max Purge Time* set points should be tailored to each installation and LN_2 supply setup. Password is required to change any settings.

04/15/2019 09:53:4 Unit ID :			N2 Level : 33.2 in I2 Usage 2.91 in/day	,		
Setup	Network	Alarms	Users	Service	Email	Advanced
Temperature	• F	•C	LN2	Level	Inc	hes Cm
Enable Tenths [Display 🔵			High Level Fil	l Limit 36	
Top Temp	Alarm -150			Low Level Fil	I Limit 30	
Bot Temp	Alarm -150		Schedul	ed Fill		Off
Purge Temp Se				Every 2 v day	ys @ 11	00
			Time	(min)		
Current Purge	e Temp 560°C			Max Fill Time (*	1-240) 240	
Date Format		1M/DD/YYYY		Max Purge Time	(0-60) 5	
			Password	x	S	aved!
		~		\bigcirc		

Figure 5-2: Settings Page > Setup Tab

Allowable Ranges

The following table contains the allowable ranges and default for each setting.

Setting Name	Allowable Range	Default Setting
Top Temp Alarm	-140°C to -200°C	-150°C
Bot Temp Alarm	-140°C to -200°C	-150°C
Purge Temp Setpoint	30°C to -100°C	-50°C
High Level Fill Limit	2.5 in. to 36 in.	Model specific
Low Level Fill Limit	2 in. to 35.5 in.	Model specific
Max Fill Time	1 to 240 min	120 min
Max Purge Time	0 to 60 min	5 min

Network Settings

Connect to a WiFi network by navigating to the **Settings > Network** tab. Scan for wireless networks, select a network, and enter the security key if required.

06/01/2023 14:23:15 Unit ID :	Top : Bot :	LN2 Level : LN2 Usage	2	\diamond	<u>ş</u>
Setup N	letwork A	larms Users	s Service	Email	Advanced
WiFi	ithernet Hid	den WiFi S	can WiFi Networks	Disconnect from	n WiFi
SSID: potatofac	e-Router-2G InternetA	ccess 192.168.106.207			
SSID: potatofac	e Not Connected				
	Realtek RTL8192EU	Wireless LAN 802.11n U	JSB 2.0 Network Adapte	er E84E06650FEF	
		Pa	assword •••• X	Save Co	onfig 🜉
		~	\odot		¢

Figure 5-3: Settings Page > Network Tab

Alarms Settings

Set up remote text and email notifications by navigating to **Settings > Alarms** tab. Choose the specific alarms and enter the phone numbers and/or email addresses to receive notifications. Controller must be connected to WiFi for remote alarm notifications to be sent.

10/03/2023 17:20:41 Unit ID :	Top : 23°C Bot : 20°C	LN2 Level : 9.9 in LN2 Usage 0.00 in/day	8	\bigcirc	ê 6
Setup Netwo	rk Alarms	Users Ser	vice l	Email	Advanced
Remote Alarm No	tifications	Alarm Notifications	Phone # F	ormat: 12223	334444
Low Level		Email / Phone (1)			
High Level		Email / Phone (2)			
High Temp Usage		Email / Phone (3)			
Stuck Valve	0000000	Email / Phone (4)			
LN2 Supply Empty		Email / Phone (5)			
Lid Open					
Lid Access		Email / Phone (6)			
On Battery Power			Send	Test Notificati	ons
		Password •••	• x	Confirm Chan	ges! 🜉
	~			¢	

Figure 5-4: Settings Page > Alarms Tab

Users Settings

Set up the Lid Access Control feature in the **Settings > Users** tab. When the Lid Access Control toggle is enabled, a user must enter a valid user password (a 4 digit PIN) before opening the lid or an alarm will sound. You may assign up to 10 unique user passwords.

07/18/2023 08:31:09 Unit ID :	Top : 34°C Bot : 14°C	LN2 Level:0.1 in LN2 Usage 0.00 in/da	y	8	\rightarrow	<u></u>
Setup Network	: Ala	arms Users	Servic	e	Email	Advanced
		User Password (4 digi	t PIN)			
User 1	####		User 6	####		
User 2	####		User 7	####		
User 3	####		User 8	####		
User 4	####		User 9	####		
User 5	####		User 10	####		
	L	id Access Control				
		Passwore	d ••••	х	Save Co	onfig 🜉
		~	\bigcirc			¢

Figure 5-5: Settings Page > Users Tab

Service Settings

From the **Settings > Service** tab, you can set up your service provider information, as well as request and log service. You can also calibrate the sensor following the instructions on the screen.

07/18/2023 0 Unit ID :	8:31:29	Top : 34°C Bot : 14°C	LN2 Level : LN2 Usage		,	3	\bigcirc	()	(Δ)
Setup	Network	Alarms		ers	Service		Email	Adva	anced
Provider:	Your Servic	e Provider:			Senso sure LN2 level s calibrate but		alue below		
Contact:						Ca	librate Leve	ł	
Phone: Email:			Place RTD in LN2 for at least 10 seconds then press calibrate buttons below						
					34	Calib	rate Top Te	mp	
	Request	Service			14	Calibra	te Bottom ⁻	Temp	
	Test Service	Notifications	Remove all Calibration						
	Log S	ervice			Le	vel Line Fl	ush		
				Password	••••	х	Save Co	onfig	L .
1		<i>ب</i> ر	-		\bigcirc			0	

Figure 5-6: Settings Page > Service Tab

Email Settings

Set up a custom SMTP server for sending email notifications in the **Settings > Email** tab. This allows the emails to be sent from a customer's domain name.

	el: 0.1 in ge 0.00 in/day 🔅 🛆 🛜 🙆
Setup Network Alarms	Users Service Email Advanced
Use Custom SMTP Email Server	ConnectNormal
SMTP Server address	
Port	25
SMTP Sending Email Address	
SMTP Username	
SMTP Password	
	Password •••• X Save Config

Figure 5-7: Settings Page > Email Tab

Advanced Settings

On the **Advanced** tab you can restart and shutdown the HMI, update the USB, enable automatic reboots, set the serial number and unit name, and retrieve the freezer serial number and controller versions.

A four digit numerical Admin password is required to change any settings. You can set that password in this tab.

06/01/2023 14:21:22 Unit ID :	Top : Bot :	LN2 Le LN2 Us			\diamond	\bigcirc	((r	(a)
Setup	Network	Alarms	Users	Service		Email	Adva	nced
	Restart HMI		S	ierial Number				
	Shutdown HMI			UnitName				
	USB Update			HMI Version	2.1.101.0			
				PLC Version	0.0			
Auto	Reboot		Adı	min Password	••••			
			Password		х	Save Co	onfig 💂	
		~		\bigcirc			0	

Figure 5-8: Settings Page > Advanced Tab

Default Settings

Each freezer comes preloaded with default settings tailored to vapor storage. Temperature sensors are placed at the top and bottom of the storage space to capture the full range of sample temperatures. Verify and adjust these settings as needed.

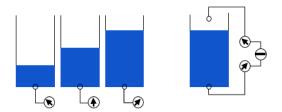
Default Setting	A220/E264	A440/E528	A700/E840	A1000/E1200	A76				
Low Level Fill - in (cm)	5.8 (14.7)	7.1 (18.0)	7.8 (19.8)	8.0 (20.3)	7.3 (18.5)				
High Level Fill - in (cm)	7.8 (19.8)	9.1 (23.1)	9.8 (24.9)	10.0 (25.4)	9.3 (23.6)				
High Level Alarm - in (cm)		High Level Fill +0.5 in (1.3 cm)							
Low Level Alarm - in (cm)	Low Level Fill -0.5 in (1.3 cm)								
High Tem- perature Alarms		-150°C							
Fill Time Alarm			120 min						
Purge Time			5 min						
Purge Temp		-50°C							
Temp Level Units			°C in						
Password			8888						

6. Operation

LN₂ Vapor Storage

Cryopreservation is the storage of material below -135 °C (-211 °F) in order to provide longevity to biospecimens. Around -135 °C is referred to as the glass transition point (Tg) of polyol's water solution. It is generally accepted that below Tg, biological activity ceases. At these temperatures, enzymatic activity slows to a stop while frozen water molecules inside cells can no longer move freely and participate in chemical reactions. Current best practices recommend dry storage below -150 °C in LN₂ vapor for a significant safety margin and to reduce the risk of cross contamination between samples. Properly preserved samples can be retrieved after decades of storage, successfully reanimated, and be virtually the same physiologically as the day they were frozen.

When properly insulated in cryogenic containers, or dewars, LN_2 can be used as an energy efficient refrigerant for cryopreservation. It is a consumed or depleted refrigerant so additional LN_2 must be routinely added to maintain the freezer storage temperature. If LN_2 is depleted and not replenished, the freezer will slowly warm and eventually reach ambient temperature.


 LN_2 is piped into the freezer from a pressurized supply system so that it fills the freezer from the bottom up. The control system automatically maintains the LN_2 level inside the freezer while monitoring and logging storage conditions. A freezer typically requests additional LN_2 once or twice a week to top itself off in order to keep enough LN_2 in the reservoir to hold temperature for up to several weeks. The sample turn tray hangs above this reservoir of LN_2 and keeps the samples in a dry vapor storage area. Vaporization of the LN_2 inside the insulated freezer provides cryogenic temperatures with a very small temperature gradient of only \pm 3°C.

Accessing Samples

Samples are packaged in containers and racks and then placed in the freezer turn tray storage area through the offset lid opening. The turn tray should be rotated and stopped slowly to avoid any nip or pinch hazards. The folding step, handle, offset opening, and hinged lid make accessing samples easy. Carefully lower and raise the folding step to avoid any pinch hazard. Carefully open and close the lid to avoid any pinch hazard. Sufficient work space is available for transfer units to pick and place or identify samples, etc., while properly maintaining the cold chain. When the lid is opened, fog clear is initiated and a cryogenic LED illuminates the freezer interior for visibility. Even with the lid left open, the freezer temperature maintains below -150 °C. LN₂ usage increases because of the additional heat input, so a 15 minute lid open alarm is included to help avoid energy waste. The turn tray is easily rotated in either direction by hand to bring the target storage location to you so the sample can be pulled or placed directly up or down. Each freezer lid includes a locking tab so that access to the freezer contents can be restricted with a clasp type lock.

LN₂ Level Measurement

A differential pressure system is used to measure the LN_2 level inside the freezer. This system is based on the principle that the pressure generated by a fluid column is proportional to the depth of that fluid column. The difference between the pressure measured at the inside bottom of the freezer and atmospheric pressure will determine the pressure generated by the LN_2 . This is then displayed as inches or centimeters of LN_2 . Once every 24 hours, a level sensing line flush occurs using LN_2 supply pressurized gas to ensure the differential pressure signal is unobstructed. This differential pressure system allows for an accurate and reliable method of monitoring the LN_2 level.

Manual confirmation of the LN_2 level is performed with the measuring stick. A measuring channel is included along the turn tray divider that allows you to insert the measuring stick all the way down to the bottom of the freezer. Fully insert the measuring stick and wait approximately 2 seconds. Carefully remove the measuring stick and observe the LN_2 frost line. Subtract 0.5 in (1.3 cm) to account for rapid boiling of the LN_2 to obtain your LN_2 level.

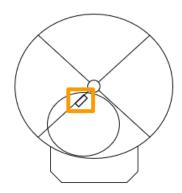


Figure 6-1: Measuring channel for manual LN₂ level confirmation located along freezer divider.

High Efficiency Cryo Freezers feature a second, redundant LN₂ level line. This can be used for independent, third party level monitoring, troubleshooting or in the event of a main line blockage. This second annular line is offset from the main lines, located higher up in the freezer.

LN₂ Level Control

The LN₂ level is automatically maintained by the control system. The user-defined High Fill and Low Fill set points determine when the freezer requests LN₂. Each freezer is shipped with default level settings tailored to vapor storage for each model. These setpoints are easily adjusted from the controller interface. Alarm thresholds are automatically placed at 0.5 in (1.3 cm) above the High Fill and 0.5" (1.3 cm) below the Low Fill set point. These alarms are to notify the user to take corrective action if the LN₂ level ever gets outside of the set range.

Following the initial fill, the LN_2 level will slowly decrease as LN_2 boils off until the Low Fill setting is reached. Prior to starting the fill, a prefill purge is initiated to exhaust warm gas from the freezer plumbing and supply lines. This system helps reduce the fill time and long term LN_2 consumption. The freezer purge valve opens allowing pressurized air and nitrogen gas to exit the purge muffler at the back of the freezer. It can take several minutes of purging, depending on the supply setup, before the plumbing and supply lines are cold enough to support LN_2 flow. The exhaust temperature is monitored and when it cools down to its setpoint, the LN_2 supply lines are primed and ready to deliver LN_2 . The purge valve then closes and the fill valves open allowing LN_2 to flow into the freezer. LN_2 is piped into the freezer so that it fills from the bottom until the High Fill setting is reached and the freezer fill valves close. This process is repeated to maintain the appropriate operating LN_2 level range.

During a fill, the LN_2 vapor is vented through the lid gasket, directed underneath the top cover and out the safety panel towards the back of the freezer. Some condensation around the lid, LN_2 input, and safety panel vents while filling is normal. Persistent, excessive, or patterned condensation and frost along the body of the freezer could be indicative of an insulation issue and should be addressed.

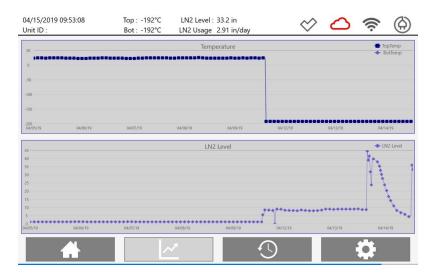
Fill functionality is intentionally disabled or paused under certain circumstances for user safety and convenience:

- When the LN₂ level is displayed as 0.0 in (0.0 cm), automatic fill is disabled to avoid unexpected filling during initial startup or to avoid a potential overfill if level sensing fails.
 - \circ $\;$ Touching Start Fill initiates automatic or initial fill.
- When the ${\rm LN}_2$ level is at or above High Fill, fill is disabled to avoid a potential overfill.
 - Touching Fog Clear will continue to function, but the freezer will not fill.
- When running on battery backup, automatic fill is disabled to save power and maximize battery backup monitoring life
 - Touching Start Fill or Fog Clear will still initiate a fill or fog clear
- When the LN₂ supply is empty, automatic fill is disabled.
 - \circ Automatic fill will be enabled when the supply is no longer found empty, which can occur during a LN₂ supply check or when the **Start Fill** button is pressed.

LN₂ Usage

The insulated freezer is designed to minimize heat transfer in order to efficiently maintain cryogenic temperatures for an extended period of time. The LN_2 usage provides a running average of the rate of LN_2 boil off. An LN_2 usage alarm is triggered if there is a significant increase in the LN_2 consumption (either three times the current baseline usage or greater than 10 inches per day), which could possibly be indicative of a freezer insulation issue. Several things can impact the short term LN_2 usage such as introducing warm racks, leaving the lid off for an extended period, etc., but corrective action may be required if the LN_2 usage steadily increases and does not return to its baseline value.

Temperature Measurement


The freezer temperature is measured and controlled through the presence and vaporization of LN_2 inside the insulated freezer. RTD temperature sensors are placed at the top and bottom of the sample storage area. The resistance output of these sensors is directly correlated to their temperature. This output is displayed as °C or °F on the controller and recorded in the event log.

The freezer is set up to accommodate an independent, third party temperature sensor for redundancy and further sample security. The temperature sensor can be installed by removing the center plug in the top cover, loosening the retaining cap, inserting sensor, re-tightening retaining cap and reinserting the plug according to "Independent Temperature Probe Installation" on page 53.

Event Log

The freezer storage conditions are logged and displayed in the controller event log. This time stamped event log provides an unalterable electronic history of freezer performance for traceability, record keeping, and troubleshooting.

The most recent two week event log can be viewed on the **Event Log** page and is graphically displayed on the **Graphs** page. The entire event log can be exported as .db and .txt files from the **Event Log** page and saved to a USB flash drive, emailed to a designated address, or sent directly to Azenta tech service. The USB port is located on the back of the monitor housing. The freezer must be connected to WiFi for the event log to be emailed or pushed to the cloud

Figure 6-2: Performance Graph Page

Export Data						
DateTime	PurgeTemp	TopTemp	BotTemp	LN2Level	LN2Usage	Eventinfo
04/15/2019 9:48	564	-192	-191	33.2	2.91	HMI Present
04/15/2019 9:46	560	-192	-192	33.2	2.91	Reading
04/15/2019 9:38	560	-192	-191	34.2	2.91	HMI Present
04/15/2019 9:28	568	-192	-192	34.9	2.91	HMI Present
04/15/2019 9:18	564	-192	-191	35.9	2.91	HMI Present
04/15/2019 9:16	572	-192	-192	35.9	2.91	Reading
04/15/2019 9:08	221	-192	-192	36.2	2.91	HMI Present
04/15/2019 9:04	221	-192	-192	36.4	2.91	LN2Usage-End
04/15/2019 9:04	221	-192	-192	36.4	2.91	HiLevel-End
04/15/2019 9:02	221	-192	-192	37.2	2.91	Alarm Silenced
04/15/2019 9:02	221	-192	-192	37.2	2.91	Stop Fill
04/15/2019 9:02	221	-192	-192	37.2	2.91	Start Fill

Figure 6-3: Event Log Page

Cloud Storage

When connected to a WiFi network, the controller automatically pushes data to the Microsoft Azure Cloud. This additional level of security and data storage allows for remote access, analysis, and custom reporting options to help simplify managing the regulatory environment.

Alarm Notifications

All alarm conditions are accompanied by an audible buzzer and visual alerts on the monitor and alarm beacon, unless the freezer is in initial fill state, in which case most alarms are suppressed. The audio/visual alerts can be silenced for 60 minute intervals, but will resume unless the alarm condition is corrected. Remote notifications can be sent via text and/or email when connected to WiFi. Normally open and normally closed dry alarm contacts are also provided on the back of the controller cabinet. The alarm status window opens anytime an alarm in initiated or resumes after being silenced. Touching the **Alarms** icon displays the alarm status window. This status window lists any current alarm and the time started.

08/27/2019 09:54:31 Unit ID :	Top : 25°C Bot : 43°C	LN2 Level : 0 LN2 Usage 1.42 in/day	😫 🗅 🛜 🕲
Setup	Network Alarms	Users Ser	vice Email Advanced
Remote Ala	rm Notifications	Alarm Notifications	example: 12223334444
Usage Alarm		Email / Phone (1)	
Low Level		Email / Phone (2)	
High Temp			
Stuck Valve		Email / Phone (3)	
Max Fill Time		Email / Phone (4)	
Lid Switch		Email (Dhana (E)	
On Battery Powe	r 🔘	Email / Phone (5)	
High Level		Email / Phone (6)	
Lid Access			Send Test Notifications
		Password	• X Saved!
	~	<u>.</u>	

Figure 6-4: Alarm Notifications: local audio/visual, remote text and email, dry alarm contacts

Alarm	Condition
Top Temp Alarm	Top Temp warmer than Top Temp Alarm setting.
Bottom Temp Alarm	Bottom Temp warmer than Bottom Temp Alarm setting.
Low Level Alarm	LN ₂ level below Low Level Alarm setting.
High Level Alarm	LN 2 level below High Level Alarm setting.
Sensor Error	No temperature or level signal; sensor not functioning properly.
Valve Stuck Open	Freezer plumbing has not warmed at the expected rate after a fill event. Indic- ation of a possible stuck open valve.
Lid Open	Lid left open for more than 15 minutes.

Alarm	Condition
On Battery Power	Main power is lost and freezer operating on battery backup.
Maximum Fill Time	Fill time exceeds maximum fill time.
LN ₂ Usage	$\rm LN_2$ Usage increases to three times the current baseline or over 10 inches per day. If usage does not return to baseline value, possible indication of a freezer insulation issue. Take corrective action.

Battery Backup

An onboard battery backup is included with each freezer. When the controller is connected to main power, the battery backup receives a trickle charge. A fully charged battery backup lasts approximately 36 hours in monitoring mode. A fully depleted battery takes approximately 8 hours to fully recharge under normal operation. If main power is lost, the freezer automatically switches to battery power and a *Running on Battery Backup* alarm is initiated. While running on battery backup, full monitoring, logging, and alarm functionality remain active; however, auto-fill and auto fog clear are disabled to save power. Manual fill and fog clear are still available, but require touching **Start Fill** or **Fog Clear** on the controller **Home** page. Filling or fog clearing while on battery power will reduce how long the battery backup will last.

7. Preventative Maintenance

This chapter covers the preventative maintenance for the High Efficiency Cryo Freezer. Preventative maintenance must be completed weekly, monthly, yearly, every five years, and as needed. Please see the "Preventative Maintenance Table" on page 39 for the preventative maintenance schedule. Preventative maintenance should be maintained while the system is operating properly.

Preventative Maintenance Table

This is the recommended preventative maintenance schedule for the High Efficiency Cryo Freezer. Preventative maintenance is performed while the equipment is operating properly to reduce the likelihood of potential failure.

	Weekly	Monthly	Yearly	5 Years	As Needed
Verify Temperature, LN ₂ Level and Usage	Х				
Verify LN ₂ Supply Volume and Pressure	Х				
Inspect for Excessive Frost/Condensation		х			
Check LN ₂ Con- nections		х			
Perform Function Test			Х		
Verify Function Test			Х		
Replace Real Time Clock Battery			Х		
Solenoid Valve Replacement				х	
Relief Valve Replace- ment				х	
Battery Replacement				Х	
Temperature Sensor Replacement					х
Lid Gasket Replace- ment					х
Thaw, Decontaminate, and Dry Freezer					Х

8. Troubleshooting

NOTE: Some condensation around the lid, LN_2 input, and safety panel vents while filling is normal. Persistent, excessive, or patterned condensation and frost along the body of the freezer could be indicative of an insulation issue and should be addressed.

Symptoms	Causes
Freezer Not Filling Slow Fill Max Fill Time Alarm	 Insufficient LN₂ supply volume and/or pressure LN₂ supply incorrectly connected Freezer fill valve(s) connection / faulty Plumbing assembly leak Auto fill temporarily disabled (see"LN2 Level Control" on page 33) Clogged inline filter
Short Cycle Fill	Insufficient lid ventingLeak in isolation valveLevel line obstructed
LN ₂ Exiting Muffler	 Purge temp set too cold Purge valve stuck open Purge temp sensor connection / faulty
Short / Skipped Purge Cycle	Purge temp set too warmPurge temp sensor connection / faulty
Incorrect Temp / Sensor Error	Temp probe connection / faulty
Incorrect LN ₂ Level / Sensor Error	 No level signal Insufficient lid venting Level line leak Level sensor connection / faulty

Symptoms	Causes
Excessive Frost / Condensation High LN ₂ Usage / Usage Alarms	Possible vacuum insulation issuePlumbing assembly leak
Low Level Alarm	 Freezer Not Filling Incorrect LN₂ Level / Sensor Error
High Level Alarm	 Freezer fill valves stuck open Incorrect LN₂ Level / Sensor Error
Valve Stuck Alarm	 Freezer fill valves stuck open Purge valve stuck open Purge temp sensor connection / faulty Plumbing assembly connection / leak
Battery Backup Alarm	 Main power lost and running on battery backup Power supply, battery backup connection / faulty
Lid Switch Alarm	Lid open for more than 15 minutesLid switch connection / faulty

9. Repair Procedures

Repair procedures should never be performed when LN_2 is flowing, freezer is filling, purging, or connected to an open LN_2 supply. Always close the LN_2 supply valve, release any pressure, disconnect LN_2 transfer hose and ensure freezer plumbing assembly is room temperature prior to beginning repair procedures. Battery backup selector should be in the OFF position and main power disconnected prior to beginning repair procedures on any electrical components. Failure to observe these precautions can result in severe injury. All service and maintenance should be performed by Azenta or trained Azenta representatives. Refer to the "Safety" on page 6 of this manual for more information.

LN₂ Transfer Hose Connect / Disconnect

Tools Required

• 3/4 in wrench

Estimated Time Required

• 0.1 hr

The LN_2 transfer hose should never be removed while the freezer is filling or purging, or while LN_2 is flowing, the hose is cold, pressurized, or connected to an open LN_2 supply valve. Failure to observe these precautions can result in severe injury.

Installation

Step	Action
1.	Connect and tighten the LN_2 transfer hose to the LN_2 supply (22-35 PSI) liquid. Use the valve.
2.	Connect and tighten the other end of the LN_2 transfer hose to the freezer LN_2 input.
3.	Carefully open the liquid valve on the LN_2 supply and check for leaks.

Removal

Step	Action
1.	Close the LN ₂ supply valve.
2.	Touch Start Fill to initiate a fill/purge cycle.
3.	Allow the LN_2 flow or pressure to cease and the LN_2 transfer hose to warm to room temperature.
4.	Touch Stop Fill to close freezer valves.
5.	Carefully disconnect the hose from freezer the LN ₂ input.
6.	Carefully disconnect the hose from the LN ₂ supply.

Safety Panel Removal

Tools Required

- Plastic fastener removal tool
- Dead blow hammer

Estimated Time Required

• 0.1 hr

The safety panels are sections of kydex that cover the control and plumbing systems. Their purpose is to prevent accidental user contact with cold surfaces that may result in frostbite or burns. The panels should only be removed when performing maintenance or repair and should be replaced after repairs are complete. Safety panels should not be removed when LN_2 is flowing or while the plumbing assembly is cold.

Step	Action
1.	Switch the battery backup selector to the OFF position.
2.	Disconnect the main power.
3.	Remove pinchweld from the section of safety panel, starting at the nearest seam.
4.	Remove the push rivets that mount the safety panel to the freezer brackets.
5.	Reinstall the safety panel in reverse order.
6.	Gently tap the pinchweld back into place using the dead blow hammer, if needed.
7.	Reconnect the main power.
8.	Switch the battery backup selector to the ON position.

Control Cabinet Removal

Tools Required

• N/A

Estimated Time Required

• 0.1 hr

The control cabinet must be removed anytime maintenance or repair is to be performed on any of the control system components. Do not remove control cabinet while freezer is filling or plumbing assembly is cold.

Step	Action
1.	Switch the battery backup selector to the OFF position.
2.	Disconnect the main power.
3.	Remove the rear safety panel ("Safety Panel Removal" on page 44).
4.	Remove the wingnuts on the underneath side of the top cover.
5.	Lift to remove the control cabinet, careful not to over extend the wires.
6.	Reinstall the control cabinet in reverse order.
7.	Reconnect the main power.
8.	Switch the battery backup selector to the ON position.

Lid Removal

Tools Required

• T25 bit driver

Estimated Time Required

• 0.1 hr

Lid removal may take place while the freezer is in operation. The freezer can maintain a temperature of at least -150 °C with the lid completely removed. If the lid has to be removed for an extended period, it is recommended to cover the freezer opening to prevent excess moisture from entering the freezer. Do not remove the lid while the freezer is filling or plumbing assembly is cold.

Step	Action
1.	Close the LN ₂ supply valve.
2.	Remove the four screws that attach the lid to lid hinge on the freezer top cover and remove the lid.
3.	Reinstall the lid in reverse order.
4.	Open the LN ₂ supply valve.

Lid Gasket Replacement

Tools Required

- T25 bit driver
- Utility knife
- Dead blow hammer

Estimated Time Required

• 0.5 hr

The lid gasket is a wear item that will need to be replaced as necessary. The gasket should be replaced if damaged or deformed so that it is no longer adequately sealing the lid to the freezer.

Step	Action
1.	Remove the lid according to "Lid Removal" on page 46.
2.	Remove the pinchweld gasket from the lid, starting at the seam.
3.	Slide the new gasket, starting by inserting the hinge popout through the slit in the gasket.
4.	Tap the gasket into place using the dead blow hammer, starting at the seam.
5.	Trim the gasket, if needed.
6.	Reinstall the lid according to "Lid Removal" on page 46.

Lid Foam Insulation Replacement

Tools Required

• 7/16 in socket or wrench

Estimated Time Required

• 0.25 hr

Lid insulation may be replaced with the lid on but it is recommended to remove the lid first.

Step	Action
1.	Open the lid.
2.	Remove the nuts and retaining washers from the foam insulation, leaving the all thread.
3.	Remove the foam insulation.
4.	Install the new foam insulation over the all thread.
5.	Reinstall the retaining washers and fasteners, finger tight.
6.	Do not over-tighten - turn fasteners 1 turn past finger tight.

Pressure Relief Valve Replacement

Tools Required

- 3/4 in wrench
- 5/8 in wrench
- Thread tape/sealant

Estimated Time Required

• 0.1 hr

Relief valve should be replaced when leaking, relieving at +/-10% of rating, or as required by the preventative maintenance schedule. Do not remove pressure relief valve while LN_2 is flowing, freezer is connected to an open LN_2 supply or plumbing assembly is cold.

Step	Action
1.	Disconnect the LN ₂ transfer hose according to "LN2 Transfer Hose Connect / Disconnect" on page 43.
2.	While holding the compression fitting with one wrench, loosen and remove the relief valve with the other wrench.
3.	Apply the thread tape/sealant on the first few threads of the relief valve.
4.	Thread the relief valve into the fitting.
5.	Tighten with one wrench while holding the compression fitting stationary with the other wrench.
6.	Reconnect the ${\rm LN}_2$ transfer hose according to "LN2 Transfer Hose Connect / Disconnect" on page 43 and check for leaks.

Fill and Purge Valve (Main Line Assembly)

Tools Required

- 7/8 in wrench
- 11/16 in wrench
- 9/16 in wrench
- 3/8 in wrench

Estimated Time Required

• 0.5 hr

Replace valves if operating improperly or as required by the preventative maintenance schedule.

Step	Action
1.	Disconnect the LN ₂ transfer hose ("LN2 Transfer Hose Connect / Disconnect" on page 43).
2.	Disconnect the power.
3.	Remove the safety rear panel ("Safety Panel Removal" on page 44).
4.	Disconnect the connection for solenoid valves.
5.	Disconnect the ¼ in copper line by loosening the brass compression fitting.
6.	Disconnect the plumbing bracket by removing the (2) $\%$ in nuts on back of the bracket.
7.	Disconnect the stainless fill line by loosening the stainless compression fitting closest to plumbing.
8.	Reconnect the new assembly in reverse order (7 thru 1).
9.	Reconnect the ${\rm LN}_2$ transfer hose according to "LN2 Transfer Hose Connect / Disconnect" on page 43 and check for leaks.
10.	Reinstall the safety panels according to "Safety Panel Removal" on page 44 and verify the operation.

Isolation Valve Replacement

Tools Required

- 3/4 in wrench
- 1/8 in hex bit driver
- #0 Phillips screwdriver
- Wire cutters/strippers
- Wire crimpers
- Ohmmeter / DMM

Estimated Time Required

• 0.5 hr

Replace valve if operating improperly or as required by the preventative maintenance schedule. In most instances, the valve body does not need to be replaced. Replacing the valve stem and/or coil are adequate for preventative maintenance and most repairs.

Step	Action
1.	Disconnect the LN ₂ transfer hose according to "LN2 Transfer Hose Connect / Disconnect" on page 43.
2.	Remove the safety panels according to "Safety Panel Removal" on page 44.
3.	Remove the valve housing by loosening and removing the Phillips head screws.
4.	Measure and verify the coil resistance. Remove the assembly if out of specification.
5.	Install the new coil and stem assembly if required.
6.	Reinstall the valve housing and tighten the Phillips head screws.
7.	Reconnect the ${\rm LN}_2$ transfer hose according to "LN2 Transfer Hose Connect / Disconnect" on page 43 and check for leaks.
8.	Reinstall the safety panels according to "Safety Panel Removal" on page 44 and verify the operation.

Temperature Probe Replacement

Tools Required

• Terminal screwdriver

Estimated Time Required

• 0.25 hr

Replace temperature probes if operating improperly or as required by the preventative maintenance schedule.

Step	Action
1.	Remove the center cap from top cover.
2.	Remove the rear safety panel ("Safety Panel Removal" on page 44).
3.	Remove the controller cabinet ("Control Cabinet Removal" on page 45).
4.	Disconnect the temp probe wires located in the terminal strip on the RTD module inside the controller cab- inet.
5.	Verify the temp probe resistance. Refer to "Appendices" on page 63.
6.	If out of specification, replace the temp probe.
7.	Mark the depth of the temp probe as a guide for the replacement.
8.	Remove the center plug by loosening the knob a half turn and pulling straight up.
9.	Gently remove the old temp probe from center tube.
10.	Gently insert the new temp probe into the center tube through the cap so that it passes down between the orange silicone piece and black o-ring.
11.	Connect the temp probe wiring.
12.	Re-tighten the temp probe retainer cap.
13.	Reinstall the center plug in top cover.

Independent Temperature Probe Installation

Tools Required

• N/A

Estimated Time Required

• 0.1 hr

The freezer is setup to accommodate an independent third party temperature probe.

Step	Action
1.	Remove the black hole cover on the top of the freezer to expose the center support cable gland.
2.	Loosen the thumb screw to remove the top cap on the cable gland. NOTE: There are already (3) wires present: (2) temperature probes and the set of LED wires.
3.	Gently insert the independent temp probe through the open hole.
4.	Reinstall the top cap assembly.
5.	Ensure the labels on the existing temperature probes are outside of the seal and that the labels are not caught under the seal to avoid leaks.
6.	Reinstall the black hole cover.

Purge Temperature Probe Replacement

Tools Required

- 3/4 in wrench
- 1/8 in hex bit driver
- X/X in wrench
- Thread tape/sealant

Estimated Time Required

• 0.25 hr

Replace temperature probe if operating improperly or as required by the preventative maintenance schedule.

Step	Action
1.	Remove the LN ₂ transfer hose according to "LN2 Transfer Hose Connect / Disconnect" on page 43.
2.	Remove the safety panels according to "Safety Panel Removal" on page 44.
3.	Disconnect the purge temperature probe wiring.
4.	Measure and verify the probe resistance. Replace the probe if out of specification.
5.	Unscrew and remove the purge temperature sensor from the plumbing assembly.
6.	Apply the thread tape/sealant on the first few threads of the new probe.
7.	Install and tighten the probe.
8.	Connect the probe wiring.
9.	Reconnect the ${\rm LN}_2$ transfer hose according to "LN2 Transfer Hose Connect / Disconnect" on page 43 and check for leaks.
10.	Reinstall the safety panels according to "Safety Panel Removal" on page 44 and verify the operation.

Battery Backup Replacement

Tools Required

• T25 bit driver

Estimated Time Required

• 0.5 hr

Batteries should be replaced if operating improperly, corroded, leaking, or as required by the preventative maintenance schedule.

Step	Action
1.	Remove the safety panels according to "Safety Panel Removal" on page 44.
2.	Disconnect the wiring from the batteries, careful not to short the battery terminals.
3.	Loosen the velcro strap and remove the battery.
4.	Install the new battery and secure it with velcro strap.
5.	Install the wiring according to the diagram, careful not to short the battery terminals.
6.	Reinstall the safety panels according to "Safety Panel Removal" on page 44 and verify the operation.

Controller Replacement

Tools Required

• N/A

Estimated Time Required

• 0.5 hr

Replace controller if operating improperly or as directed by Azenta.

Step	Action
1.	Switch the battery backup selector to the OFF position.
2.	Disconnect the main power.
3.	Remove the rear safety panel ("Safety Panel Removal" on page 44).
4.	Remove the wingnuts on the underneath side of the top cover.
5.	Lift to remove the control cabinet, careful not to over extend wires.
6.	Disconnect the molex connections, RTD terminal strip, and the vinyl DP tube.
7.	Reinstall the control cabinet in reverse order.
8.	Reconnect the main power.
9.	Switch the battery backup selector to the ON position.

Power Supply Replacement

Tools Required

- T25 bit driver
- #0 Phillips screwdriver
- Small flathead screwdriver

Estimated Time Required

• 0.5 hr

Replace power supply if operating improperly or as directed by Azenta.

Step	Action
1.	Remove the safety panels according to "Safety Panel Removal" on page 44.
2.	Disconnect the wiring.
3.	Disconnect the wiring from the power supply.
4.	Loosen the power supply fasteners and remove from the mounting bracket.
5.	Install the new power supply.
6.	Install the wiring according to the diagram.
7.	Reinstall the safety panels according to "Safety Panel Removal" on page 44 and verify the operation.

Fuse Replacement

Tools Required

- 1/8 in hex bit driver
- #0 Phillips screwdriver
- Ohm meter / DDM

Estimated Time Required

• 0.25 hr

Step	Action
1.	Remove the control cabinet according to "Control Cabinet Removal" on page 45.
2.	Using the ohmmeter, check across the terminals to determine which fuse needs replacing.
3.	Lift the tab on the fuse holder to remove.
4.	Install the new fuse and ensure a snap fit.
5.	Reinstall the control cabinet according to "Control Cabinet Removal" on page 45 and verify the operation.

Temperature Probe Calibration Verification

Tools Required

• LN₂ in small Dewar

Estimated Time Required

• 0.25 hr

Temperature probes are calibrated at the factory. Temp probe calibration verification should be performed whenever probes are replaced, suspected of improper operation, or as required by the preventative maintenance schedule.

Step	Action
1.	Remove the center plug from the top cover. A small flathead screwdriver may be required.
2.	Remove the temperature probe retainer cap from the center tube.
3.	Mark the depth of the temperature probe as a guide for reinstalling.
4.	Gently remove the temperature probe from the center tube.
5.	Submerge the temperature probe in LN ₂ .
6.	Allow the displayed temperature to stabilize.
7.	Verify that the temperature is within specification according to the Appendix B: "Altitude - LN2 Temperature Table" on page 65.
8.	If it is within specification, reinstall the temp probe in reverse order.
9.	If it is out of specification, replace the probe according to "Temperature Probe Replacement" on page 52.

Manual LN₂ Level Verification

Tools Required

• LN₂ measuring stick

Estimated Time Required

• 0.1 hr

 LN_2 level is calibrated at the factory. Manual LN_2 level verification should be performed whenever the controller or flush or isolation valves have been replaced, suspected of improper operation, or as required by the preventative maintenance schedule. Verifying LN_2 level on a weekly basis helps prevent or minimize any failures.

Step	Action
1.	Open the lid.
2.	Fully insert the LN_2 measuring stick down the channel located along the turn divider.
3.	Wait approximately 10 seconds.
4.	Carefully remove the measuring stick and observe the LN ₂ frost line.
5.	Close the lid.
6.	Subtract 0.5 in (1.3 cm) to obtain your LN ₂ level.
7.	Verify the measured LN_2 level is within +/-0.5 in (1.3 cm) of the displayed LN_2 level.

LN₂ Level Calibration

Tools Required

• LN₂ measuring stick

Estimated Time Required

• 0.1 hr

If the measured and displayed ${\rm LN}_2$ levels are different, adjust the offset to calibrate the ${\rm LN}_2$ level.

Step	Action
1.	Measure the LN ₂ level according to "Manual LN2 Level Verification" on the previous page.
2.	If the LN ₂ level is incorrect, adjust the offset by navigating to the "Advanced Settings" on page 28.
3.	Increase or decrease the current offset so that the displayed LN ₂ level matches the measured LN2 level.
4.	Confirm that the LN ₂ level is accurate.

Freezer Decontamination

Tools Required

- Bleach solution (10%)
- Water
- Wet/dry vacuum
- Pressurized nitrogen gas

Estimated Time Required

• 72 hr

Freezers are stainless steel vacuum vessels with an inner aluminum turn tray. They can be decontaminated with a generally accepted 10% bleach solution. Alcohol based disinfectants, detergents, hydrogen peroxide decontamination, ethylene oxide sterilization, and other methods safe to use on stainless steel and aluminum can also be used. Contact Azenta for more information.

Step	Action
1.	Ensure that the freezer is empty and at room temperature.
2.	Cover all the inner surfaces, top cover, and handles with bleach solution.
3.	Let it stand for 30 minutes.
4.	Thoroughly rinse it with water and remove.
5.	Allow freezer to completely thaw.
6.	Prior to returning the freezer to service, flush the annular lines with nitrogen gas to ensure that all the mois- ture has been removed.

10. Appendices

The following chapter contains the appendices for the manual.

Appendix A: Spare Parts

Part Number	Description	Notes	
382505	LN ₂ measuring stick	48 in (122 cm)	
262727	Uninsulated transfer hose (CGA-295)	6 ft (183 cm)	
FT-0004	Vacuum jacketed hose (CGA-295), 6 ft	6 ft (183 cm)	
FT-0005	Vacuum jacketed hose (CGA-295), 10 ft	10 ft (254 cm)	
XX-0046	Easy roll wheels	Larger, softer freezer casters	
EL-0049	Internal temperature probes	Pt-100 RTD	
FT-0043	Pressure relief valve	75 PSI (5.2 bar)	
FT-0037	Fill/bypass valves	24VDC Normally closed solenoid	
FT-0034	Isolation valve	24 VDC Normally open	
FT-0019	Inline filter	1/4 NPT 90 micron brass filter	
FT-0002	1/4 NPT female T-fitting	N/A	
FT-0007	Male CGA-296 to male ¼ NPT adapter	N/A	
FT-0008	Cap for CGA-295 fitting	N/A	
EL-0002	Plumbing temperature probe	Pt-100 Pipe Plug RTD	
FA-0002	Push rivets	Pack of 50	
EL-0018	Level sensor, 1%	Controller version before 7.1	
EL-0163	Level sensor, 2%	Controller version 7.1 and newer	
XX-0196	Lid switch	Proximity switch	
EL-0031	Fuse for cryo freezer controller	GMA - 1A Pack of 10	
EL-0011	Battery backup	Battery, AGM, 12V, 20AH	
EL-0013	Power supply	24VDC power supply	
XX-0180	Control system	Cryo controller	

Appendix B: Altitude - LN₂ Temperature Table

Alti	Temperature of LN ₂	
Feet	Meters	°C/ °F
0 - 2,000	0-610	-196.2 / -321
2,001 - 4,000	611 - 1220	-196.8 / -322
4,001 - 6,000	1221 - 1830	-197.4 / -323
6,001 - 8,000	1831 - 2440	-198.0 / -324
8,001 - 10,000	2441 - 3050	-198.5/ -325

Appendix C: Temperature - Pt-100 Sensor Resistance Table

°C	Ohms	°C	Ohms
- 200	18.5	- 80	68.3
- 190	22.8	- 70	72.3
- 180	27.1	- 60	76.3
- 170	31.1	- 50	80.3
- 160	35.5	- 40	84.3
- 150	39.7	- 30	88.2
- 140	43.9	- 20	92.2
- 130	48.0	- 10	96.1
- 120	52.1	0	100.0
- 110	56.2	10	103.9
- 100	60.3	20	107.8
- 90	64.3	30	111.7

Appendix D: LN₂ Level - Pressure Units Table

in LN ₂	in H ₂ O	PSI	in LN ₂	in H ₂ O	PSI
0.5	0.4	0.02	5.5	4.5	0.16
1.0	0.8	0.03	6.0	4.9	0.18
1.5	1.2	0.04	6.5	5.3	0.19
2.0	1.6	0.06	7.0	5.7	0.21
2.5	2.0	0.07	7.5	6.1	0.22
3.0	2.4	0.09	8.0	6.5	0.23
3.5	2.8	0.10	8.5	6.9	0.24
4.0	3.2	0.12	9.0	7.3	0.26
4.5	3.6	0.13	9.5	7.7	0.28
5.0	4.1	0.15	10.0	8.1	0.29

Appendix E: WEEE Statement (European Union)

The symbol above indicates that Waste Electrical and Electronic Equipment (WEEE) is not to be disposed of as unsorted municipal waste. Equipment marked with this symbol is to be collected separately.

The objectives of this program are to preserve, protect and improve the quality of the environment, protect human health and utilize natural resources prudently and rationally. Specific treatment of WEEE is indispensable in order to avoid the dispersion of pollutants into the recycled material or waste stream. Such treatment is the most effective means of protecting the customer's environment.

The waste collection, reuse, recycling, and recovery programs available to Azenta Life Sciencescustomers, vary by customer location. Please contact the responsible body (e.g., your laboratory manager) for information about local requirements.